Search results for "enclosure method"

showing 3 items of 3 documents

Enclosure method for the p-Laplace equation

2014

We study the enclosure method for the p-Calder\'on problem, which is a nonlinear generalization of the inverse conductivity problem due to Calder\'on that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.

Convex hullGeneralization35R30 (Primary) 35J92 (Secondary)EnclosureMathematics::Classical Analysis and ODEsInverseMonotonic function01 natural sciencesTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsLaplace's equationMathematics::Functional AnalysisCalderón problemApplied Mathematics010102 general mathematicsMathematical analysisComputer Science Applications010101 applied mathematicsNonlinear systemSignal ProcessingJumpp-Laplace equationenclosure methodAnalysis of PDEs (math.AP)
researchProduct

Superconductive and insulating inclusions for linear and non-linear conductivity equations

2015

We detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to prove partial results when the underlying equation is the quasilinear $p$-Laplace equation. Further, we rigorously treat the forward problem for the partial differential equation $\operatorname{div}(\sigma\lvert\nabla u\rvert^{p-2}\nabla u)=0$ where the measurable conductivity $\sigma\colon\Omega\to[0,\infty]$ is zero or infinity in large sets and $1<p<\infty$.

Pure mathematicsControl and Optimizationmedia_common.quotation_subjectMathematics::Analysis of PDEsBoundary (topology)probe methodConductivity01 natural sciencesMathematics - Analysis of PDEs35R30 35J92 (Primary) 35H99 (Secondary)FOS: MathematicsDiscrete Mathematics and CombinatoricsPharmacology (medical)Nabla symbol0101 mathematicsmedia_commonp-harmonic functionsLaplace's equationPhysicsPartial differential equationCalderón problemComputer Science::Information Retrieval010102 general mathematicsta111Zero (complex analysis)Infinity3. Good health010101 applied mathematicsNonlinear systeminclusionModeling and Simulationinverse boundary value problemAnalysisinkluusioAnalysis of PDEs (math.AP)enclosure method
researchProduct

Monotonicity and enclosure methods for the p-Laplace equation

2018

We show that the convex hull of a monotone perturbation of a homogeneous background conductivity in the $p$-conductivity equation is determined by knowledge of the nonlinear Dirichlet-Neumann operator. We give two independent proofs, one of which is based on the monotonicity method and the other on the enclosure method. Our results are constructive and require no jump or smoothness properties on the conductivity perturbation or its support.

Convex hull35R30 (Primary) 35J92 (Secondary)EnclosurePerturbation (astronomy)Monotonic function01 natural sciencesConstructiveMathematics - Analysis of PDEsEnclosure methodFOS: Mathematics0101 mathematicsMathematicsInclusion detectionMonotonicity methodLaplace's equationmonotonicity methodApplied Mathematics010102 general mathematicsMathematical analysista111inclusion detection010101 applied mathematicsNonlinear systemMonotone polygonp-Laplace equationAnalysis of PDEs (math.AP)enclosure method
researchProduct